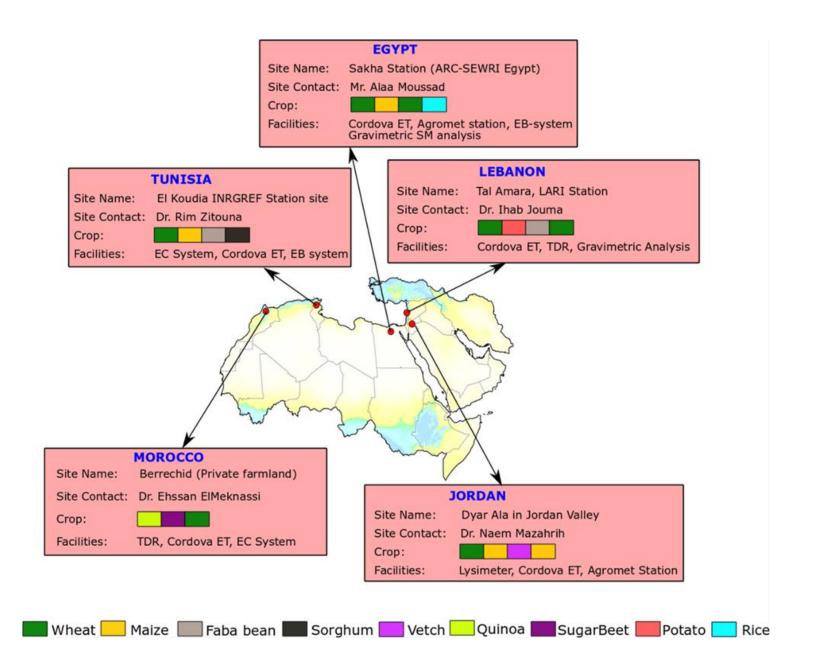


NENA Regional Network for Evapotranspiration

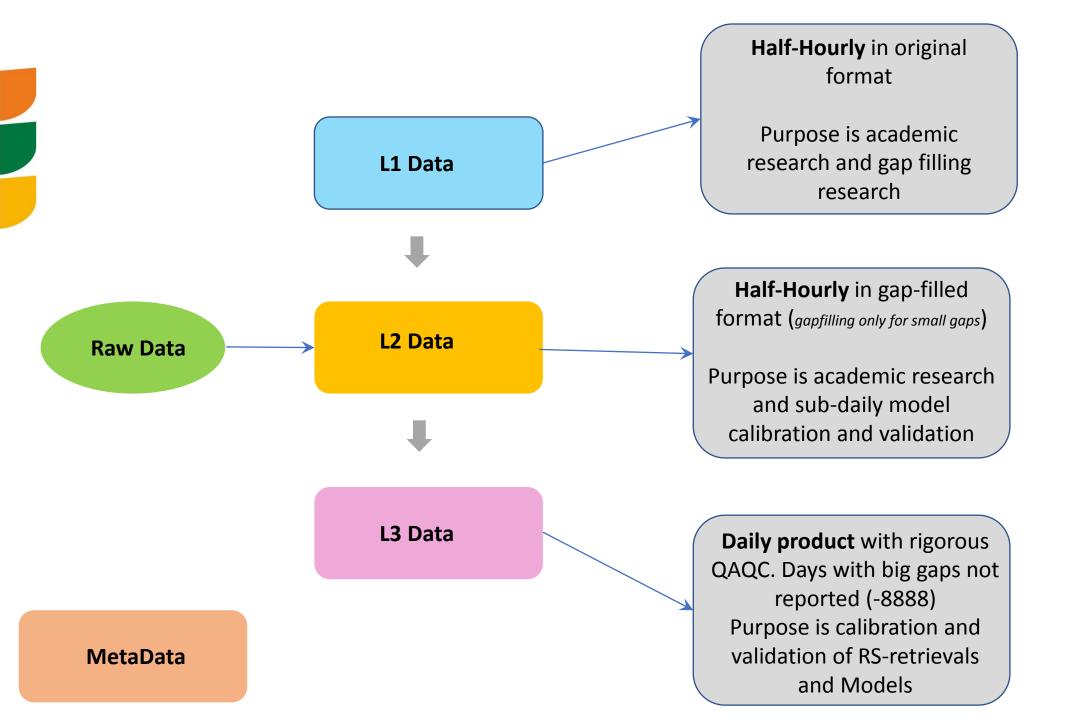
Vinay Nangia, Ph.D. and Ajit Govind, Ph.D.

NENA ET -Network: A Successful Model Towards an Operationalized Scientific Partnership

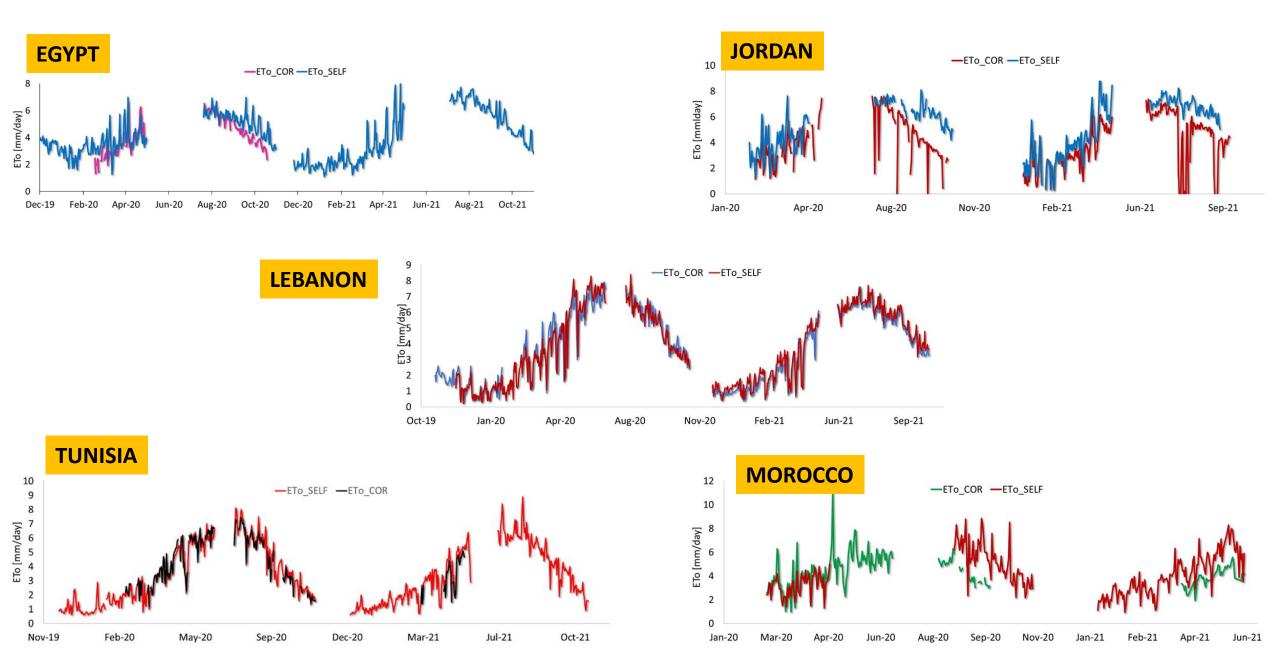


The Issue and the Response

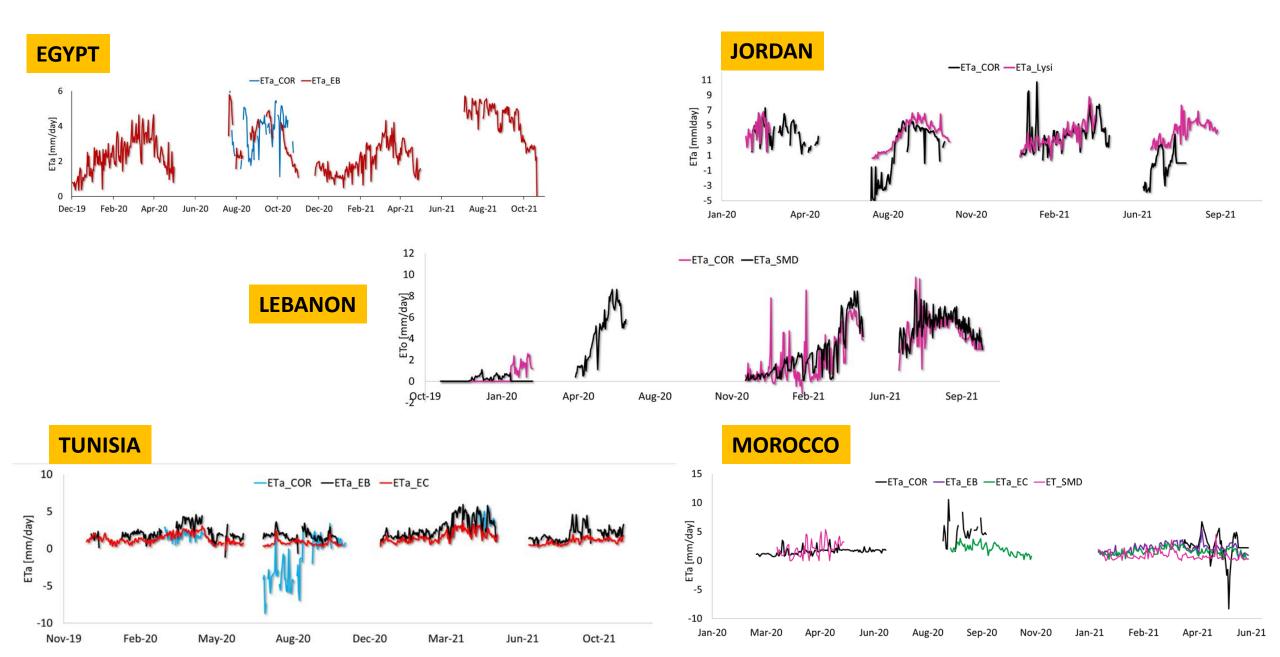
- Several Remote-Sensing ETa data are made freely available at an increasing temporal and ground resolution [SSEBop, WaPOR, ET Enseble, GloDET, OpenET]. This is extremely valuable for progressing in agricultural water management on large areas
- Although many ET RS-based estimates are available that can be used for regional planning and policy development, they suffer from uncertainties owing to they being not rigorously validated.
- The weak point: these RS data suffer from a limited field validation (virtually none in the NENA Region)
- ICARDA, in collaboration with FAO-RNE, has activated a NENA Regional-Network of field ETa monitoring including (Egypt, Jordan, Lebanon, Morocco, Palestine and Tunisia)


Objective

To build a common understanding and methodology on ETa measurements, in the field and through RS, on accuracy assessments of RS ETa data of different databases and on their analysis and use for agriculture-related applications (e.g., water accounting, water productivity, water management, etc.)


Seasons 1-4: Crops and Seasons

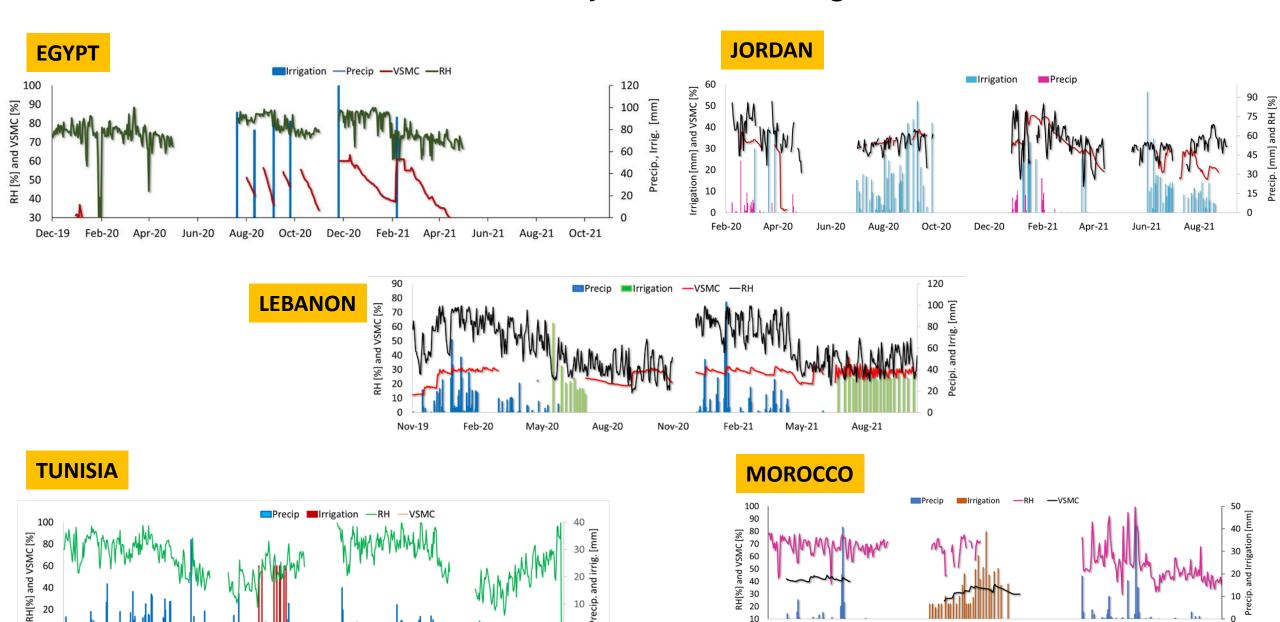
Country	Season-1	Season-2	Season-3	Season-4
Egypt	Winter Wheat	Summer Maize	Winter Wheat	Summer Rice
	(Dec 1,2019 –	(July 20, 2020 –	(Nov. 25, 2020 –	(June 16, 2021 –
	May 13, 2020)	Oct 21, 2020)	April 30,2021)	Oct. 20, 2021)
Jordan	Winter Wheat	Summer Maize	Fodder Vetch	Maize
	(Dec 25, 2019 –	(July 15, 2020 –	(Jan. 13, 2021 – April	(June 14, 2021 – Sep.
	May 5, 2020)	Oct. 20, 2020)	30, 2021)	9, 2021)
Lebanon	Wheat	Potato- Fallow	Faba bean	Maize
	(Dec 7, 2019 –	(March 1, 2020 –	(Dec. 3, 2020 – May 6,	(June 17, 2021 – Oct.
	July 2, 2020)	July 31, 2020)	2021)	8, 2021)
Morocco	Maize (Feb 23,2020 – July 3, 2020	Beetroot (Aug. 27, 2020 – Nov. 11, 2020)	Durum Wheat (Jan 11, 2021 – May 31, 2021)	NA
Tunisia	Wheat	Maize	Faba bean	Sorghum
	(Dec 3, 2019 –	(July 19,2020 –	(Dec. 19, 2020 – May	(Aug. 9, 2021 – Nov.
	June 23, 2020)	Nov 3, 2020)	26, 2021)	2, 2021)



How well we measure ETo?

How well we measure ETa?

How well we Hydrometeorological Variables?


30

May-20

Jul-20

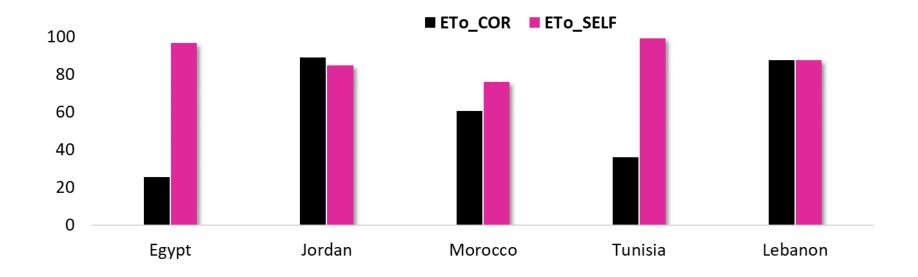
Mar-21

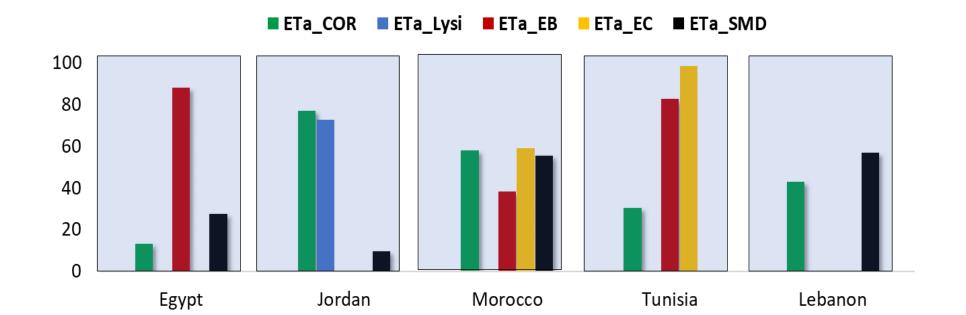
May-21

20

Aug-20 Oct-20 Dec-20

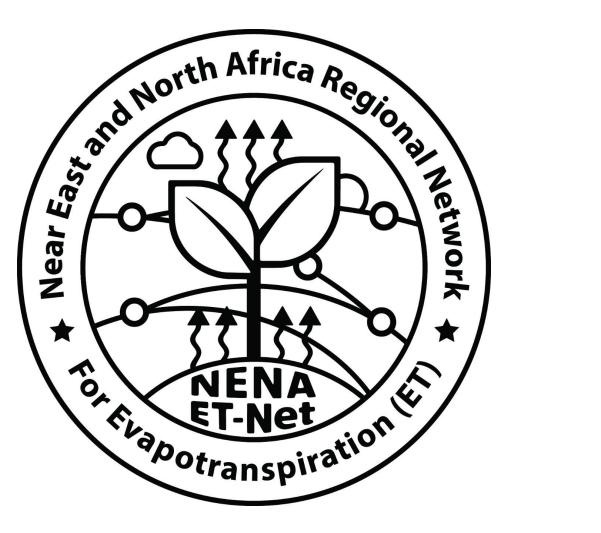
Feb-21 Apr-21 Jun-21 Aug-21 Oct-21


Data Completeness


	Egypt	Jordan	Morocco	Tunisia	Lebanon
ETo_COR	25	89	61	36	88
ETo_SELF	97	85	76	99	88
ETa_COR	13	77	58	30	43
ETa_Lysi		73			
ETa_EB	88		38	83	
ETa_EC			59	98	
ETa_SMD	28	10	56		57
H	70	60	59	98	4
G	64	60	59	61	
LE	64	60	59	98	
Precip	75	89	98	100	96
A_Temp	84	83	82	100	100
S_Temp	76	71	70	59	95
Canopy_Temp	25	71	56	84	83
SW_In	66	60	18	86	45
SW_Out	55			86	4
LW_In	55			86	
LW_Out	55			86	
NetRad	70	60	93	86	
RH	75	83	82	100	100
VSMC	58	65	78	1	81
WS	98	83	82	99	100
LAI				2	2
NDVI				3	
Cnpy_Ht	4	9	41	6	8
Irrigation	1	58	26	1	4
Runoff					
Capillary					
Pressure	18	83	49	53	96

Description of Variable	Variable Shortname	Units used
Year	YEAR	YYYY
Month	MONTH	MM
Julian Day of the Year	DOY	DDD
Local Time (2400hr format)	TIME	2330
Potential ET (ETo) by CORDOVA method	ETo_COR	mm/day
Potential ET (ETo) by other methods	ETo_SELF	mm/day
Actual ET (ETa) measured by CORDOVA method	ETa_COR	mm/day
Actual ET (ETa) measured with Lysimeter	ETa_Lysi	mm/day
Actual ET (ETa) measured with EB Method	ETa_EB	mm/day
Actual ET (ETa) measured with EC Method	ETa_EC	mm/day
Actual ET (ETa) measured with SM Depletion	ETa_SMD	mm/day
Sensible Heat Flux	Н	W/m2
Ground Heat Flux	G	W/m2
Latent Heat Flux	LE	W/m2
Precipitation	Precip	mm/day
Air Temperature	A Temp	oC
Soil Temperature at 10cm	S Temp	оС
Plant Canopy Temperature	Canopy Temp	оС
Incoming SW Radiation Flux	SW In	W/m2
Outgoing SW Radiation Flux	SW Out	W/m2
Incoming LW Radiation Flux	LW In	W/m2
Outgoing SW Radiation Flux	LW Out	W/m2
Net Radiation Flux	NetRad	W/m2
Relative Humidity	RH	%
Volumetric Soil Water Content	VSMC	fraction
Wind Speed at 2m	WS	m/sec
Normalized Difference Vegetation Index (optional)	NDVI	-1 to +1
Canopy Height (optional)	Cnpy Ht	m
Runoff from the Field (optional)	Runoff	mm/day
Capillary Rise (optional)-estimated	Capillary	mm/day
Air Pressure- measurement height	Pressure	mbar
Leaf Area Index	LAI	m2/m2
Irrigated Water	Irrigation	mm/day
Method used for Gap Filling	Gap_Method	Regression
Person who prepared the file	Prepared By	Initials of Technician
Date of this dataset preparation	Date of Prep	24/2/2020
Attested By	CountryManager	Initials of CM

Data Completeness for ET variables per se



Knowledge sharing and management

- Have conducted a webinar series recordings available
- Have a co-learning platform and data sharing dashboard
- Have expanded to Palestine, need to expand further
- Datasets useful for remote sensing validation, for Kc estimation, for crop modeling, for WP assessments, for water accounting et al.
- Need to continue supporting this network but need to move from measurements to application development to benefit from datasets

Thank You